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ABSTRACT An explosion in the number of available genome sequences obtained
through metagenomics and single-cell genomics has enabled a new view of the diver-
sity of microbial life, yet we know surprisingly little about how microbes interact with
each other or their environment. In fact, the majority of microbial species remain uncul-
tivated, while our perception of their ecological niches is based on reconstruction of
their metabolic potential. In this work, we demonstrate how the “seed set framework,”
which computes the set of compounds that an organism must acquire from its environ-
ment (E. Borenstein, M. Kupiec, M. W. Feldman, and E. Ruppin, Proc Natl Acad Sci U S A
105:14482–14487, 2008, https://doi.org/10.1073/pnas.0806162105), enables computa-
tional analysis of metabolic reconstructions while providing new insights into a mi-
crobe’s metabolic capabilities, such as nutrient use and auxotrophies. We apply this
framework to members of the ubiquitous freshwater actinobacterial lineage acI, con-
firming and extending previous experimental and genomic observations implying that
acI bacteria are heterotrophs reliant on peptides and saccharides. We also present the
first metatranscriptomic study of the acI lineage, revealing high expression of transport
proteins and the light-harvesting protein actinorhodopsin. Putative transport proteins
complement predictions of nutrients and essential metabolites while providing addi-
tional support of the hypothesis that members of the acI are photoheterotrophs.

IMPORTANCE The metabolic activity of uncultivated microorganisms contributes to
numerous ecosystem processes, ranging from nutrient cycling in the environment to
influencing human health and disease. Advances in sequencing technology have en-
abled the assembly of genomes for these microorganisms, but our ability to gener-
ate reference genomes far outstrips our ability to analyze them. Common ap-
proaches to analyzing microbial metabolism require reconstructing the entirety of an
organism’s metabolic pathways or performing targeted searches for genes involved
in a specific process. This paper presents a third approach, in which draft metabolic
reconstructions are used to identify compounds through which an organism may in-
teract with its environment. These compounds can then guide more-intensive meta-
bolic reconstruction efforts and can also provide new hypotheses about the specific
contributions that microbes make to ecosystem-scale metabolic processes.
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Natural microbial communities have central roles in the biosphere, ranging from
mediating nutrient cycling to influencing human health and disease (1, 2). How-

ever, the majority of microbial species remain uncultivated, a state of affairs that poses
a significant challenge to our understanding of their physiology and metabolism.
Recent advances in sequencing technology and bioinformatics have enabled assembly
and analysis of reference genomes for a wide range of hitherto-uncultured community
members from diverse environments (3) that can be used to reconstruct an organism’s
metabolism.

Common approaches to metabolic reconstruction involve the comprehensive re-
construction of an organism’s metabolic pathways (4) or a targeted search for genes
involved in processes of interest (5). These reconstructions can then be analyzed using
manual methods or computational approaches such as flux-balance analysis (FBA) (6).
However, FBA-based approaches require a comprehensive understanding of an orga-
nism’s growth requirements and biomass composition, information which is often
unavailable for uncultivated microorganisms. An alternative approach is to compute
an organism’s seed set, representing the set of compounds that the organism
cannot synthesize on its own and must exogenously acquire from its environment
(e.g., its growth requirements) (7). These compounds may represent both auxotro-
phies, i.e., the essential metabolites for which biosynthetic routes are missing, and
nutrients, i.e., the compounds for which degradation routes but not synthesis
routes are present in the genome. The seed set framework offers potential advan-
tages over other reconstruction-based approaches, as identification of seed com-
pounds facilitates a focused analysis by identifying those compounds through
which an organism interacts with its environment.

In the present report, we present a computational pipeline to predict seed com-
pounds using metabolic network reconstructions generated from KBase (8). We apply
this pipeline to a collection of 36 metagenome-assembled genomes (MAGs) and
single-cell genomes (SAGs) from the abundant and ubiquitous freshwater actinobac-
terial lineage acI, which is thought to have a central role in nutrient cycling in diverse
freshwater systems (9–18). The seed compounds predicted by our analysis are in
agreement with previous experimental and genomic observations (19–27), confirming
the ability of our method to predict an organism’s auxotrophies and nutrient sources.

In particular, we found that members of the acI lineage are auxotrophic for essential
vitamins and amino acids and may consume as nutrients a wide array of N-containing
compounds (including ammonium, branched-chain amino acids, polyamines, and di-
and oligopeptides) as well as mono-, poly-, and oligosaccharides. To complement these
predictions, and to understand which pathways dominate active metabolism of acI in
its natural environment, we conducted an in situ metatranscriptomic analysis of gene
expression in the acI lineage. This analysis revealed that the members of the acI lineage
express a diverse array of transporters for auxotrophies, nutrients, and other com-
pounds that may contribute to their observed dominance and widespread distribution
in a variety of aquatic systems.

RESULTS
Phylogenetic affiliation of acI genomes. We identified 17 SAGs and 19 MAGs from

members of the acI lineage (see Table S1 in Data Set S1 in the supplemental material)
in a larger set of reference genomes derived from our long-term study sites. A
phylogenetic tree of these genomes built using a concatenated alignment of single-
copy marker genes is shown in Fig. 1. Previous phylogenetic analyses using 16S rRNA
gene sequences showed that the acI lineage can be grouped into 3 distinct monophy-
letic clades (acI-A, acI-B, and acI-C) and 13 so-called “tribes” (28). In this study, the
phylogenetic tree also identified three monophyletic branches, enabling MAGs to be
classified to the clade and tribe levels based on the taxonomy of SAGs within each
branch (as determined by the 16S rRNA gene sequences that had been either PCR
amplified or assembled from the single cell). Note that three MAGs formed a mono-
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phyletic group separate from clades acI-A and acI-B; we assume that these genomes
belong to clade acI-C as no other acI clades have been identified to date.

Estimated completeness of tribe- and clade-level composite genomes. We
constructed composite genomes from multiple SAGs and/or MAGs to partially alleviate
the limitations presented by incomplete genomes. To do this, we first estimated the
completeness of tribe- and clade-level composite genomes using CheckM (29), which
uses lineage-specific marker genes organized into collocated sets to obtain a robust
estimate of genome completeness. This allowed us to determine the finest level of
taxonomic resolution at which we could confidently compute seed compounds, using
genome completeness as a proxy for metabolic reaction network completeness (see
Fig. S2 in the supplemental material). We deemed genomes to be nearly complete if
they contained 95% of the lineage-specific marker genes. With the exception of tribe
acI-B1, the tribe-level composite genomes were estimated to be incomplete (Fig. S2A).
At the clade level, the genomes of clades acI-A and acI-B are estimated to be nearly
complete, while the acI-C composite genome remains incomplete, as it contains only
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FIG 1 Phylogenetic placement of the genomes used in this study within the acI lineage. The tree was
built using RAxML (41) from a concatenated alignment of protein sequences from 37 single-copy marker
genes (40). The order Actinomycetales forms the outgroup. Vertical black bars indicate groups of
genomes belonging to defined tribes/clades within the acI lineage, as determined using 16S rRNA gene
sequences (for SAGs and bin FNEF8-2 bin_7 acI-B only) and a defined taxonomy (28). SAGs are indicated
with italic text. Figure S1 shows the position of the acI lineage relative to other orders within the class
Actinobacteria.

Metabolism and Gene Expression of Actinobacterial acI

July/August 2017 Volume 2 Issue 4 e00091-17 msystems.asm.org 3

 on F
ebruary 25, 2020 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

msystems.asm.org
http://msystems.asm.org/


75% of the 204 marker genes (Fig. S2B). As a result, seed compounds were calculated
for composite clade-level genomes, with the understanding that some true seed
compounds for the acI-C clade will not be predicted.

Computation and evaluation of potential seed compounds. Metabolic network
reconstructions for each genome were built using KBase. Composite metabolic net-
work graphs were then constructed for each tribe and clade by merging metabolic
network reconstructions of individual genomes. Seed compounds for each clade were
then computed from that clade’s composite metabolic network graph using a custom
implementation of the seed set framework (Fig. 2). A total of 125 unique seed
compounds were identified across the three clades (Table S2 in Data Set S1).

Because KBase is an automated annotation pipeline, the predicted set of seed
compounds is likely to contain inaccuracies (e.g., due to missing or incorrect annota-
tions). As a result, we screened the set of predicted seed compounds to identify those
that represented biologically plausible auxotrophies and nutrients and manually cu-
rated this subset to obtain a final set of auxotrophies and nutrient sources. Of 125
unique compounds, 31 (24%) were retained in the final set of proposed auxotrophies
and nutrients. Tables S3 and S4 in Data Set S1 contain this final set of compounds for
clades acI-A, acI-B, and acI-C, and Fig. 3 shows the auxotrophies and nutrients that
these compounds represent.

A)

acI-C

B) C)

Actinobacterium_10 ME00885 ME03864

BIN_10 (inner ring)

ME00885

ME03864 (outer ring)

Log2 RPKM

L-homoserineL-methionine
O-Acetyl-L-homoserine

O-Phospho-L-homoserine
L-Aspartate 4-semialdehyde

Homocysteine

FIG 2 Overview of the seed set framework and metatranscriptomic mapping, using three genomes from the acI-C clade
as an example. (A) Metabolic network graphs were created for each genome belonging to clade acI-C. In these graphs,
metabolites are represented as nodes (circles) and reactions by arcs (arrows). Gray nodes and edges indicate components
of the composite graph missing from that genome graph. Additional information on this step of the workflow is available
in Fig. S2. (B) A composite network graph was created for each clade by joining graphs representing all genomes from that
clade, and seed compounds (red) were computed for the composite graph. Additional information on this step of the
workflow is available in Fig. S3, Fig. S4, and Fig. S5. (Inset) Three seed compounds which indicate an auxotrophy for
L-homoserine, a methionine precursor. (C) Metatranscriptomic reads were mapped to each individual genome using
BBMap. Orthologous gene clusters were identified using OrthoMCL (30). For each cluster, unique reads which map to any
gene within that cluster were counted using HTSeq (48). The relative levels of gene expression were computed using RPKM
(49).
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Making sense of seed compounds via protein clustering and metatranscrip-
tomic mapping. For seed compounds representing nutrient sources, genes associated
with the consumption of these compounds should be expressed. To test this, we
collected and sequenced four metatranscriptome samples from Lake Mendota (Dane
County, WI, USA). However, because seed compounds were computed from each
clade’s composite metabolic network graph, genes associated with the consumption of
seed compounds may be present in multiple genomes within the clade. To facilitate the
linkage of metatranscriptome measurements to seed compounds, we used OrthoMCL
(30) to identify clusters of orthologous groups (COGs) in the set of acI genomes, merged
metatranscriptome reads from all four samples, and mapped the reads to COGs within
each clade.

Sequencing of cDNA from all four rRNA-depleted metatranscriptome samples
yielded approximately 160 million paired-end reads. After merging, filtering, and
further in-silico rRNA removal, approximately 81 million, or 51%, of the reads remained
(Table S5 in Data Set S1). We then used BBMap (https://sourceforge.net/projects/
bbmap/) to map metatranscriptome reads to our reference genome collection. After
mapping the metatranscriptomes to our acI genomes, we calculated the average
coverage of each genome in our reference collection. Within each clade, the most
abundant genome was detected with at least 16-fold coverage (Table S6 in Data
Set S1).

Finally, we calculated gene expression for each COG on the basis of the number of
reads per kilobase per million (RPKM) (Fig. 2). OrthoMCL identified a total of 5,013
protein clusters across the three clades (Table S7 in Data Set S1) with an average
confidence of 84% in annotation for COGs containing more than one gene. The COGs
were unequally distributed across the three clades, with clade acI-A genomes contain-
ing 3,175 COGs (63%), clade acI-B genomes containing 3,459 COGs (69%), and clade
acI-C genomes containing 1,365 COGs (27%). Of these, 525 COGs were expressed in
clade acI-A, 661 in clade acI-B, and 813 in clade acI-C (Table S8 in Data Set S1). Among
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FIG 3 Seed compounds of members of the acI lineage. (A) Auxotrophies and nutrient sources, not
including peptides and glycosides. (B) Peptides and glycosides. These compounds represent those
inferred from genome annotations rather than the seed compounds. In panel B, the intensity of the color
indicates the log2 fold change relative to the median (FC Rel. to Med.) of the encoding gene cluster. For
compounds acted upon by multiple gene clusters, the percentile of the most highly expressed cluster
was chosen.
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the expressed genes, the median log2 RPKM values were 31.1 in clade acI-A, 32.0 in
clade acI-B, and 69.4 in clade acI-C. Due to differing RPKM values in each clade, we
report gene expression values for each clade relative to the median log2 RPKM value for
that clade.

Auxotrophies and nutrient sources of the acI lineage. Seed set analysis yielded
seven auxotrophies that could be readily mapped to ecophysiological attributes of the
acI lineage (Fig. 3A and Table S3 in Data Set S1). In all three clades, beta-alanine was
identified as a seed compound, suggesting an auxotrophy for pantothenic acid (vitamin
B5), a precursor to coenzyme A formed from beta-alanine and pantoate (Table S9 in
Data Set S1). In bacteria, beta-alanine is typically synthesized via aspartate decarbox-
ylation, and we were unable to identify a candidate gene for this enzyme (aspartate
1-decarboxylase; EC 4.1.1.11) in any acI genome. Pyridoxine 5=-phosphate and 5=-
pyridoxamine phosphate (forms of the enzyme cofactor pyridoxal 5=-phosphate [vita-
min B6]) were also predicted to be seed compounds, and genes encoding numerous
enzymes involved in the biosynthesis of these compounds were not found in the
genomes (Table S9 in Data Set S1).

Clades within the acI lineage also exhibited distinct auxotrophies. Clade acI-A was
predicted to be auxotrophic for the cofactor tetrahydrofolate (THF [vitamin B9]), and
numerous enzymes for its biosynthesis were missing (Table S9 in Data Set S1). This
cofactor plays an important role in the metabolism of amino acids and vitamins. In turn,
clade acI-B was predicted to be auxotrophic for adenosylcobalamin (vitamin B12),
containing only four reactions from its biosynthetic pathway (Table S9 in Data Set S1).
Finally, acI-C was predicted to be auxotrophic for the nucleotide UMP (used as a
monomer in RNA synthesis) and the amino acids lysine and homoserine. In all cases,
multiple enzymes for the biosynthesis of these compounds were not found in the acI-C
genomes (Table S9 in Data Set S1).

A number of seed compounds were also predicted to be degraded by members of
the acI lineage (Fig. 3B; Table S3 in Data Set S1). Both clade acI-A and clade acI-B were
predicted to use D-altronate and trans-4-hydroxy proline as nutrients, and acI-B was
additionally predicted to use glycine betaine.

Finally, all three clades were predicted to use dipeptides and the sugar maltose as
nutrients. Clades acI-A and acI-C were also predicted to consume the polysaccharides
stachyose, manninotriose, and cellobiose. In all cases, these compounds were associ-
ated with reactions catalyzed by peptidases or glycoside hydrolases (Tables S10 and
S11 in Data Set S1), which may be capable of acting on compounds beyond the
predicted seed compounds. Thus, we used these annotations to define nutrient
sources, rather than using the predicted seed compounds themselves. Among these
nutrient sources were di- and polypeptides, predicted to be released from both
cytosolic and membrane-bound aminopeptidases. As discussed below, we identified a
number of transport proteins capable of transporting these released residues. In Lake
Mendota, clades acI-B and acI-C expressed two aminopeptidases, one of which was
expressed at nearly 175% of the median gene expression levels (Table S10 in Data
Set S1). Clade acI-A expressed a third aminopeptidase at a lower level (40%, the median
gene expression level) (Table S10 in Data Set S1).

All three clades were predicted to encode an alpha-glucosidase, which in Lake
Mendota was expressed only in clades acI-B and acI-C, at nearly 60% of the median
gene expression level (Table S11 in Data Set S1). All three clades also encode a
beta-glucosidase, but it was not expressed in our samples. Furthermore, all three clades
encode an alpha-galactosidase and multiple maltodextrin glucosidases (which free
maltose from maltotriose), but these were expressed only in clades acI-A and acI-C. The
alpha-galactosidase had a log2 RPKM expression value of 1.5 times the median in clade
acI-C, while the maltodextrin glucosidases were expressed at approximately 30% of the
median (Table S11 in Data Set S1) in both clade acI-A and clade acI-C.

Compounds transported by the acI lineage. Microbes may be capable of trans-
porting compounds that are not strictly required for growth, and comparing such
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compounds to predicted seed compounds can provide additional information about an
organism’s ecology. Thus, we used the metabolic network reconstructions for the acI
genomes to systematically characterize the transport capabilities of the members of the
acI lineage.

All acI clades encode and were found to express a diverse array of transporters
(Fig. 4; Data Set S1; Text S1). Consistent with the presence of peptidases, all clades
contained numerous genes for the transport of peptides and amino acids, including
putative oligopeptide and branched-chain amino acid transporters, as well as putative
transporters for the polyamines spermidine and putrescine. All clades also contained a
putative transporter for ammonium. The ammonium, branched-chain amino acid, and
oligopeptide transporters had expression values above the median, with expression
values for the substrate-binding protein (of the ATP-binding cassette [ABC] transport-
ers) ranging from 1.7 to 411 times the median (Table S13 in Data Set S1). In contrast,
while all clades expressed some genes from the polyamine transporters, only clade
acI-B expressed the binding protein, at a level approximately 27.8 times the median
(Table S13 in Data Set S1). Finally, clades acI-A and acI-B also contain a putative
transporter for glycine betaine, which was expressed only in clade acI-A, at approxi-
mately 9.6 times the median (Table S13 in Data Set S1). However, we cannot rule out
the possibilities that the expression of these transporters changes with space and time
and that all three clades may express these enzymes under different conditions.

All clades also expressed transporters consistent with the presence of glycoside
hydrolases, including transporters annotated as putative maltose, xylose, and ribose
ABC-type transporters, which may indicate that acI bacteria are capable of transporting
sugars, including both disaccharides (maltose) and monosaccharides (xylose and ri-
bose). Of these, the putative maltose transporter was most highly expressed (but only
in clades acI-A and acI-B), with expression values for the substrate-binding protein in a
range in excess of 40 times the median (Table S13 in Data Set S1).

Representatives from the acI lineage were also found to encode and express a
number of transporters that do not have corresponding seed compounds, including
potential nucleobase transporters and purine/pyrimidine transporters (annotated as a
uracil and a xanthine/uracil/thiamine/ascorbate family permease, respectively). Both of
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FIG 4 Transporters that are actively expressed by members of the acI lineage, as inferred from consensus
annotations of genes associated with transport reactions present in metabolic network reconstructions.
The intensity of the color indicates the log2 fold change relative to the median value determined for the
encoding gene cluster. For multisubunit transporters, the RPKM of the substrate-binding subunit was
chosen (see Table S13 in Data Set S1). For some transporters, consensus annotations have been replaced
with broad metabolite classes. Such metabolite classes are indicated with superscripts, and the original
annotations are as follows: 1, spermidine and putrescine; 2, maltose; 3, xylose; 4, ribose; 5, uracil; 6,
cytosine/purine/uracil/thiamine/allantoin; 7, xanthine/uracil/thiamine/ascorbate.
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these are expressed in all three clades, with expression values ranging from 4.7 to 46
times the median (Table S13 in Data Set S1). Clades acI-A and acI-B also contained a
second potential purine/pyrimidine transporter (annotated as a cytosine/purine/uracil/
thiamine/allantoin family permease), which was expressed only in clade acI-B (Ta-
ble S13 in Data Set S1). These transporters may be responsible for the uptake of the
seed compounds UMP (a pyrimidine derivative) and vitamin B1 (also known as thia-
mine). In addition, clade acI-A contained but did not express a putative transporter for
cobalamin (vitamin B12), and both clade acI-A and clade acI-B contained but did not
express transporters for thiamine (vitamin B1) and biotin (vitamin B7) (Table S13 in Data
Set S1).

Finally, all three clades expressed actinorhodopsin, a light-sensitive protein that is
expected to function as a proton efflux pump (31). In all clades, actinorhodopsin was
among the top 10 most highly expressed genes (Table S7 in Data Set S1), with
expression values in excess of 84 times the median in all three clades (Table S7 in Data
Set S1). Given that many of the transport proteins are ABC transporters, we speculate
that actinorhodopsin may facilitate maintenance of the proton gradient necessary for
ATP synthesis. Coupled with high expression levels of diverse transporters, this result
strongly suggests that acI functions as a photoheterotroph. However, it remains to be
seen if this behavior is a general feature of acI physiology or if it is restricted to the
specific conditions of the lake and our sampling period.

DISCUSSION

This study used high-throughput metabolic network reconstruction and the seed set
framework to predict auxotrophies and nutrient sources of uncultivated microorgan-
isms from incomplete genome sequences. The computational approach easily scales
to hundreds of metabolic reconstructions and enables a targeted analysis by identify-
ing those compounds through which an organism interacts with its environment.
However, predicted seed compounds are sensitive to the metabolic network structure,
and analyzing the results requires significant manual curation of the metabolic recon-
struction and accurate interpretation of the underlying gene annotations. As a conse-
quence, the seed set framework is not as high throughput as was initially envisioned
but is nevertheless suitable for analysis of microorganisms with high-quality metabolic
network reconstructions.

Our predictions of the substrate use capabilities of the acI lineage are largely
congruent with previous genome-centered studies based on smaller but manually
curated genome collections (22, 25, 27), indicating that the use of automatic metabolic
network reconstructions yields predictions similar to metabolic reconstruction efforts
that are based on more extensively manual methods, while being both more high
throughput and more focused on an organism’s substrate utilization capabilities. In
particular, this study predicted that the consumption of N-rich compounds is a univer-
sal feature of the acI lineage, with all three clades predicted to consume ammonium,
branched-chain amino acids, polyamines, and di- and oligopeptides. These findings
agree with the results of microautoradiography-fluorescent in situ hybridization (MAR-
FISH) studies that confirm the ability of acI bacteria to consume a variety of amino acids
(20, 23). Furthermore, the presence of alpha- and beta-glucosidases is consistent with
observations that acI bacteria consume glucose (19, 23), even though no obvious
glucose transport system was found in the genomes. Because transport proteins are
often capable of acting on multiple substrates, one of the putative sugar transporters
may be responsible for glucose uptake activity.

However, our approach failed to recapitulate other genomic and experimental
observations, including the uptake of N-acetylglucosamine (NAG) (32–34), the deoxy-
nucleoside thymidine (23, 35), and acetate (19) as well as the potential to hydrolyze the
cyanobacterial peptide cyanophycin via the enzyme cyanophycinase (22, 25). Inspec-
tion of these discrepancies reveals some important limitations of the seed set frame-
work and automatic metabolic reconstructions. First, the seed set framework identifies
only the compounds that the metabolic network must obtain from its environment and
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fails to identify compounds that the organism can acquire from its environment but can
also itself synthesize. Thymidine and acetate fall into this category. Second, automatic
metabolic network reconstructions may not fully capture an organism’s metabolic
network (e.g., due to missing or incorrect genome annotations). Manual inspection of
the product of the previously identified cyanophycinase gene revealed that KBase
annotated this putative enzyme as a hypothetical protein. As biochemical character-
ization of hypothetical proteins and automatic gene and protein annotation are active
areas of research, we anticipate that advances in these fields will continue to improve
the accuracy of automatic metabolic network reconstructions.

This study also suggested that auxotrophies for some vitamins may be universal
features of the acI lineage, as we predicted all clades to be auxotrophic for
pantothenic acid and pyridoxal 5=-phosphate (vitamins B5 and B6). We also predict
new auxotrophies within the acI lineage, including THF (clade acI-A), adenosylco-
balamin (vitamin B12; clade acI-B), and lysine, homoserine, and UMP (clade acI-C).
However, with the exception of adenosylcobalamin, we did not identify transport-
ers for any of these compounds. This negative result may reflect our limited
knowledge of transport proteins (36); transporters for these compounds may yet be
present in the genomes, or one or more of the predicted transporters may act on
these compounds. Furthermore, because the acI-C composite genome was esti-
mated to be around 75% complete, we cannot rule out the possibility that the
missing genes might be found in this clade when additional genomes are recov-
ered. Nonetheless, these results provide additional support for the hypothesis that
distributed metabolic pathways and metabolic complementarity may be common
features of freshwater bacterial communities (37, 38).

Combined, these results suggest that the members of the acI lineage are photo-
heterotrophs and that their survival depends on the availability of a diverse array of
N-rich compounds, saccharides, and light. The acI lineage does not appear to be
metabolically self-sufficient and may participate in the turnover of high-molecular-
weight dissolved organic compounds, such as starch, glycogen, and cellulose. Meta-
transcriptomic analysis showed that transport proteins were among those most highly
expressed in the acI genomes, and expression of multiple putative amino acid trans-
porters may facilitate uptake of these labile compounds. We also observed differences
in the relative levels of expression of these transporters, which may point to clade-
specific differences in affinities for these substrates. Finally, the actinorhodopsin protein
was highly expressed and may facilitate synthesis of the ATP needed to drive acI’s many
ABC-type transporters.

Finally, the fragmented and incomplete nature of SAGs and MAGs required us to
construct composite genomes for individual acI clades by leveraging multiple
genomes from closely related populations. Such an approach limits the resolution
of predictions, as we cannot make predictions at the level of tribes, smaller
populations, or individual cells. Thus, metabolic diversification at these taxonomic
levels would be missed. Constructing composite genomes may also overestimate
the metabolic capabilities of a clade or group; for example, if a complete pathway
is present in a clade but is distributed among different tribes, the clade would be
able to carry out the activity of the entire pathway in situ only if all tribes were
present in close enough proximity to exchange pathway intermediates. Nonethe-
less, the seed set approach provides a framework that can be used to generate new
hypotheses about the substrates used by members of a defined phylogenetic
group, provided that multiple closely related genomes are available. As metag-
enomic assembly and binning techniques and single-cell sequencing methods
improve and complete genomes become available, we anticipate our approach
being applied to individual microbial genomes.

MATERIALS AND METHODS
A freshwater reference genome collection. This study relied on an extensive collection of fresh-

water bacterial genomes containing MAGs obtained from two metagenomic time series from two
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Wisconsin lakes (27, 39) as well as SAGs from three lakes in the United States (21). Additional information
about this genome collection can be found in Text S1.

Metatranscriptome sampling and sequencing. This study used four metatranscriptomes obtained
as part of a larger study of gene expression in freshwater microbial communities. Additional information
about these samples can be found in the Text S1. All protocols and scripts for sample collection, RNA
extraction, rRNA depletion, sequencing, and bioinformatic analysis can be found on Github (https://
github.com/McMahonLab/OMD-TOIL [DOI: 10.5281/zenodo.839851]). Metadata for the four samples
used in this study can be found in Table S6 in Data Set S1 in the supplemental material, and the raw RNA
sequences can be found on the Sequence Read Archive (SRA) of the National Center for Biotechnology
Information (see below).

Identification of acI SAGs and actinobacterial MAGs. The members of the acI were previously
phylogenetically divided into 3 clades (acI-A, acI-B, and acI-C) and 13 tribes on the basis of their 16S rRNA
gene sequences (28). The acI SAGs were identified within a previously published genome collection (21)
and classified to the tribe level using partial 16S rRNA genes and a reference taxonomy for freshwater
bacteria, as described in Text S1. Actinobacterial MAGs were identified within two metagenomic time
series (27, 39) using taxonomic assignments from a subset of conserved marker genes, as described in
Text S1. Phylogenetic analysis of acI SAGs and actinobacterial MAGs was performed using a concatenated
alignment of single-copy marker genes obtained via Phylosift (40). Maximum likelihood trees were
generated using RAxML (41), the automatic protein model assignment option (PROTGAMMAAUTO), and
100 bootstraps.

Genome annotation, metabolic network reconstruction, and computation and evaluation of
seed compounds. In the seed set framework, an organism’s metabolism is represented via a metabolic
network graph, in which nodes denote compounds and edges denote enzymatically encoded biochem-
ical reactions linking substrates and products (42). Allowable biochemical transformations can be
identified by drawing paths along the network, in which a sequence of edges connects a sequence of
distinct vertices. In our implementation of the seed set framework, metabolic network graphs were
generated as follows.

Genome annotations were performed and metabolic network reconstructions were built using KBase.
Contigs for each genome were uploaded to KBase and annotated using the “Annotate Microbial Contigs”
method with default options, which uses components of the RAST toolkit for genome annotation (43, 44).
Metabolic network reconstructions were obtained using the “Build Metabolic Model” app with default
parameters, which relies on the Model SEED framework (45) to build a draft metabolic model. To ensure
that the reconstructions contained only reactions with genomic evidence, no gap filling was per-
formed. These reconstructions were then pruned of currency metabolites (compounds used to carry
electrons and functional groups) and highly connected compounds and converted to metabolic network
graphs (see Fig. S3 and Text S1 in the supplemental material). Many of the individual acI genomes are
incomplete. Therefore, to increase the accuracy of seed identification by means of the use of a more
complete metabolic network, composite metabolic network graphs were constructed for each tribe and
clade (Fig. S4; Text S1).

Formally, the seed set of the network is defined as the minimal set of compounds that cannot be
synthesized from other compounds in the network and whose presence enables the synthesis of all other
compounds in the network (7). Seed compounds for each composite metabolic network graph were
calculated using a new Python implementation of the seed set framework (7) (Fig. S5 and Text S1).
Because seed compounds are computed from a metabolic network, it is important to manually evaluate
all predicted seed compounds to identify those that may be biologically meaningful and that do not arise
from errors in the metabolic network reconstruction. Compounds involved in fatty acid and phospholipid
biosynthesis pathways were removed during curation, as these pathways are often organism specific and
unlikely to be properly annotated by automatic metabolic reconstruction pipelines. Seed compounds
related to currency metabolites were also removed, as data corresponding to reactions for the synthesis
of these compounds may have been removed during network pruning.

Text S1 contains a series of brief vignettes explaining why selected compounds were discarded based
on the aforementioned considerations and provides examples of additional curation efforts applied to
biologically plausible compounds. For a plausible auxotrophy, we screened the genomes for the
canonical biosynthetic pathway(s) for that compound and retained those compounds for which the
biosynthetic pathway was incomplete. For identification of a plausible nutrient source, we screened
the genomes for the canonical degradation pathway(s) for that compound and retained those com-
pounds for which the degradation pathway was complete.

All computational steps were implemented using Python scripts, freely available as part of the
reverseEcology Python package developed for this project (https://pypi.python.org/pypi/reverseEcology/
[DOI: 10.5281/zenodo.839856]).

Identification of transported compounds. For each genome, we identified all transport reactions
present in its metabolic network reconstruction. Gene-protein-reaction associations (GPRs) for these
reactions were manually curated to remove unannotated proteins, to group genes into operons (if
applicable), and to identify missing subunits for multisubunit transporters. These genes were then
mapped to their corresponding COGs and grouped accordingly. Finally, the most common anno-
tation for each COG was used to identify likely substrates for each of these groups. Only transporters
with �50% confidence in the substrate-binding subunit were retained. Because identification and
annotation of transport proteins are active areas of research (36), substrates for each transporter are
described as putative and acting on molecular classes (e.g., saccharide, amino acid) instead of on
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specific compounds, in order to better reflect the promiscuity of transport proteins and the
ambiguity of their annotation.

Protein clustering, metatranscriptomic mapping, and clade-level gene expression. OrthoMCL
(30) was used to identify clusters of orthologous groups (COGs) in the set of acI genomes. Both OrthoMCL
and BLAST were run using default options (46). Annotations were assigned to protein clusters by
choosing the most common annotation among all genes assigned to the respective cluster and a
confidence score assigned to each COG (representing the fraction of genes having the most common
annotation). Trimmed and merged metatranscriptomic reads from each of the four biological samples
were then pooled and mapped to a single reference fasta file containing all acI genomes using BBMap
with the ambig�random and minid�0.95 options. The 95% identity cutoff was chosen as this represents
a well-established criterion for identifying microbial species using average nucleotide identity (ANI) (47),
while combining the ambig option with competitive mapping using pooled acI genomes as the reference
ensured that the reads mapped to only a single genome. These results were then used to compute the
expression of each COG in each clade.

Next, HTSeq-Count (48) was run using the intersection_strict option to count the total number of
reads that map to each gene in our acI genome collection. After mapping, the list of counts was filtered
to remove those genes that did not recruit at least 10 reads. Using the COGs identified by OrthoMCL, the
genes that correspond to each COG were then identified.

Within each clade, gene expression was computed for each COG on the basis of the number of reads
per kilobase per million (RPKM) (49), while also accounting for different gene lengths within a COG and
numbers of mapped reads for each genome within a clade. That is, the RPKM value for a single COG
represents the sum of RPKM values for each gene within that COG, normalized to the appropriate gene
length and total number of mapped reads. RPKM counts were then normalized to the median level of
gene expression within that clade. Finally, the expression data (mapping of transcript reads to genes)
were visualized to ensure that the RPKM calculations were based on continuous transcription of each
gene.

Accession number(s). The raw RNA sequences can be found in the Sequence Read Archive (SRA) of
the National Center for Biotechnology Information under BioProject accession no. PRJNA362825.

Data availability. All genomic and metatranscriptomic sequences are available through IMG and
NCBI, respectively. A reproducible version of the manuscript is available at https://github.com/
joshamilton/Hamilton_acI_2017 (DOI: 10.5281/zenodo.839858).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00091-17.
TEXT S1, DOCX file, 0.02 MB.
FIG S1, EPS file, 2.6 MB.
FIG S2, EPS file, 1.3 MB.
FIG S3, EPS file, 2.8 MB.
FIG S4, TIF file, 0.3 MB.
FIG S5, EPS file, 1.7 MB.
FIG S6, EPS file, 2.3 MB.
DATA SET S1, XLSX file, 1.3 MB.
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